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We present a quantum mechanics �QM�/molecular mechanics �MM� method for coupling Kohn-Sham
density-functional theory with classical atomistic simulations based on a self-consistent embedding theory. The
formalism and numerical implementation of the method are described. The QM/MM method is employed to
study extended defects—a grain boundary and an edge dislocation in Al by focusing on hydrogen �H�-defect
interactions. We find that it is energetically more favorable for H impurities to segregate at the grain boundary
and the dislocation core as opposed to the bulk. We provide direct first-principles evidence that both the grain
boundary and the dislocation could serve as a “pipe” to accelerate H diffusion and shed light on the corre-
sponding atomistic mechanisms. The results demonstrate that the QM/MM method is a powerful approach in
dealing with extended defects in materials.
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I. INTRODUCTION

Despite the ever increasing computational power, model-
ing, and simulation of complex material problems at atomic
level still remain a challenge.1 For example, quantum me-
chanics �QM� is mandatory for a proper treatment of bond
breaking, charge transfer, electron excitation, magnetism,
etc., in materials. However, owing to its computational de-
mand, the application of QM has been limited to relatively
small systems consisting of up to a few hundred atoms. On
the other hand, atomistic simulations based on empirical in-
teratomic potentials are often capable of describing small-
amplitude vibrations and torsions, elastic deformation and
electrostatic interactions, etc., in many material systems.
Termed as molecular mechanical �MM� methods, these em-
pirical atomistic approaches can deal with millions of atoms
or even more. Therefore algorithms that combine quantum
mechanics and molecular mechanics �QM/MM� poise to of-
fer a promising solution to the computational challenge in
materials science.1–3 Unfortunately, in contrast to a vast and
growing number of QM/MM applications in chemistry and
biochemistry,3–5 much fewer QM/MM simulations have been
attempted in materials science, and particularly for metals.

Based on how the interaction energy between QM and
MM is formulated, QM/MM methods can be divided into
two categories: mechanical coupling and quantum coupling.
With the mechanical coupling, the interaction energy is cal-
culated at the MM level whereas the interaction energy is
calculated at the QM level with the quantum coupling.3 For
many molecular systems that are of interest in chemistry and
biochemistry, one can partition the system into QM and MM
parts by cutting the chemical bonds linking the two parts and
then saturate the dangling bonds at the boundary of QM
region by so-called link atoms.3,5 This procedure and the
similar ones can be justified because of the presence of well
defined and localized chemical bonds in such molecular sys-
tems. The mechanical coupling methods that are based on the
cutting/saturating chemical bonds have seen wide applica-
tions in chemistry and biochemistry.3–5 On the other hand,
for metallic materials, the procedure is not longer valid ow-

ing to the delocalized nature of metallic bonding; it becomes
impractical to cut and saturate bonds. In fact the very con-
cept of bond becomes less appropriate than the band picture
for metals. Therefore, more sophisticated ideas have to be
developed to deal with metallic cohesion and bands repre-
sented by the delocalized electron states across the QM/MM
boundary. One of such ideas is the self-consistent embedding
theory6–13 which is based on the quantum coupling. The em-
bedding theory provides a general and potentially rigorous
framework for QM/MM coupling. The theory can be applied
to both metallic and covalently bonded systems and does not
depend on the spatial locality and the link atoms that are
indispensable in other coupling methods. For example,
Hodak et al.13 have developed a QM/MM embedding
method to study biological systems with covalent bonds. In
this paper, we are interested in the QM/MM method which is
suitable for metallic systems.

Since the most natural basis to expand the electron wave
functions in metals is plane waves, we will focus on a plane
wave, pseudopotential implementation of the self-consistent
embedding theory. The mathematical simplicity and compu-
tational efficiency associated with the plane-wave basis—
such as the possibility of working in reciprocal space and of
using the fast Fourier transform �FFT�, have rendered the
method particularly attractive. Moreover, we have imple-
mented the method in the popular Vienna ab initio simula-
tion package �VASP�,14–16 taking full advantage of the nu-
merical and computational prowess of VASP. Finally since the
method can provide both energy and force, it can be used
easily in molecular dynamics, energy barrier calculations in
conjunction with nudged elastic band method �NEB� �Ref.
17� and many other features that have been included in VASP.

In our previous QM/MM work, we have introduced a
QM/MM method that employs orbital-free density-
functional theory �OF-DFT� �Refs. 18–20� for treating the
QM region.10 However, for many material problems, the ex-
isting OFDFT functionals may not be sufficiently accurate
for the QM region. Therefore it is desirable to develop an
embedding QM/MM method with the Kohn-Sham DFT �KS-
DFT� for treating the QM region.
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Hydrogen �H� is a major reactant with solids as a result of
its high mobility and strong chemical reactivity. An under-
standing of the interactions between H and extended defects
is of considerable importance to kinetic, mechanical, and
thermodynamical properties of the materials.21 In fact, these
interactions are the ultimate culprit of H embrittlement of
metals. In addition, recent interests in H storage materials
and fuel cells create a sense of urgency in unraveling the
complicated H-defect interactions at a fundamental level. In
this paper, we examine H-dislocation and H-grain boundary
�GB� interactions by focusing on H-defect binding, H site
preference and H diffusion in the defects. The QM/MM
method is ideal for treating H-defect interactions because it
can capture both the short-range quantum mechanical inter-
actions �including charge transfer, bond breaking, and forma-
tion, etc� at the defect core and the long-range elastic field of
the extended defects. Furthermore, because it is extremely
difficult in tracking atomic motion experimentally, very few
direct measurements of H diffusion along grain boundaries
or dislocations have been reported. Therefore theoretical in-
vestigations based on first principles are invaluable to pro-
vide accurate determination of H diffusion barriers and ato-
mistic mechanisms in the extended defects.22

We first set up the stage with a brief introduction to the
QM/MM embedding formalism by defining the key concepts
and physical quantities. In Sec. II, we discuss two technical
issues including the spin-polarization calculations and the
construction of the Hamiltonian in reciprocal space. We also
examine the physical behavior of the embedding potential
which is central to the QM/MM embedding theory. In Sec.
III we apply the QM/MM method to study the interactions
between H impurities and the extended defects in Al. These
examples are chosen to both validate and demonstrate the
applicability of the method. Finally we conclude in Sec. IV
with a brief discussion of future directions.

II. METHODOLOGY

A. Formalism

In general, the entire QM/MM system is partitioned into
two regions: region I treated with QM and region II treated
with MM, as shown in Fig. 1. Normally the region I is em-
bedded into a much larger region II. Although different lev-
els of QM simulations could be employed in the region I, we
focus on the KS-DFT as mentioned in the introduction. Simi-
larly while many empirical potentials could be used in the
region II, we choose the embedded-atom method �EAM�
�Ref. 23� as an example of MM calculations in the paper.

The total energy of the QM/MM system includes the en-
ergy of the region I, the energy for the region II, and the
interaction energy between them. The self-consistent deter-
mination of the interaction energy at a quantum mechanical
level is the hallmark of the present method. In specific, the
total energy can be expressed as

Etot��tot;Rtot� = min�I�EKS��I;RI� + EOF
int ��I,�II;RI,RII��

+ EMM�RII� , �1�

where Rtot�RI�RII, RI, and RII denote atomic coordinates

in the region I and II, respectively. The charge density of the
region I, �I, which is the degree of the freedom of the prob-
lem, is determined self-consistently by minimizing the total
energy functional Eq. �1�. We associate each MM atom in the
region II with an atomic-centered electron density ��at� and a
pseudopotential; both of them are constructed a priori10 and
remain fixed during the QM/MM simulation. The charge
density of the region II, �II, is defined as a superposition of
atomic-centered charge densities �at via �II�r�=�i�II�

at�r
−Ri�, which only changes upon the relaxation of the region
II ions. The total charge density �tot is given by �tot=�I+�II.
The interaction energy between the region I and II, EOF

int ,
formulated by OF-DFT is defined as follows:

EOF
int ��I,�II;RI,RII� = EOF��tot;Rtot� − EOF��I;RI�

− EOF��II;RII� . �2�

The unique feature of OF-DFT is that it allows a QM calcu-
lation of energetics by knowing only the electronic density.
The accuracy of OF-DFT is in between KS-DFT and EAM,
which is consistent to its usage in the QM/MM method. In
other words, just as the errors of KS-DFT and EAM are in
the region I and II, respectively, the errors of the OF-DFT
coupling is localized at the interface of the region I and II.
Finally, the EAM method was developed to treat metallic
systems by approximating the density of the solid as a super-
position of charge densities of isolated atoms. The success of
EAM in capturing the energetics of metallic systems, com-
bined with its DFT foundation, make it an ideal candidate in
the present QM/MM method. �emb��I ,�II� termed as embed-
ding potential, is of crucial importance to the QM/MM
method, and is defined as a functional derivative of the in-
teraction energy EOF

int with respect to �I,

�emb�r� �
�EOF

int ��I,�II;RI,RII�
��I . �3�

�emb�r� represents the effective single-particle potential that
the region I electrons feel due to the presence of the region II
atoms �both electrons and ions�.

FIG. 1. �Color online� The schematic domain partition in the
QM/MM method with an edge dislocation in Al as an example. The
blue and magenta spheres represent region I and II atoms, respec-
tively. The dashed box represents �I and the solid box represents
the periodic box �B. The charge density of region I �I is confined
within �I, and the periodic boundary conditions are imposed over
�B.
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In this paper, the plane-wave pseudopotential method
implemented in the VASP package is employed for the KS-
DFT simulation of the region I. The minimization of the total
QM/MM energy �Eq. �1�� with respect to �I leads to a self-
consistent solution of the KS-type eigenvalue equations. The
QM/MM coupling is achieved by including the embedding
potential in the generalized KS equation; both �emb�r� and
KS equations have to be solved self-consistently. The de-
tailed expressions for the interaction energy and the embed-
ding potential can be found in Refs. 10 and 11 and are not
duplicated here.

The QM/MM method can also deal with collinear spin-
polarized systems. Specifically, the charge density �I��II� is
assumed to have two components, one for spin up �I↑��II↑�
and the other for spin down �I↓��II↓�. Since �II↑��II↓� is the
superposition of �at↑��at↓�, �at↑, and �at↓ have to be con-
structed a priori. In this way, Exc

int and �xc
emb↑�↓� can be calcu-

lated by

Exc
int = Exc��tot↑,�tot↓� − Exc��I↑,�I↓� − Exc��II↑,�II↓� ,

�xc
emb↑ = �xc

↑ ��tot↑,�tot↓� − �xc
↑ ��I↑,�I↓� ,

�xc
emb↓ = �xc

↓ ��tot↑,�tot↓� − �xc
↓ ��I↑,�I↓� , �4�

where �xc
emb↑ and �xc

emb↓ act upon �I↑ and �I↓, respectively.

B. Construction of Hamiltonian in reciprocal space

In the plane-wave basis, the Hamiltonian H�k� is con-
structed in the reciprocal space as a function of k, where k is
in the first Brillouin zone. In this Hamiltonian, the Hartree
potential VH�G� and the local pseudopotential Vloc

ion�G� are
calculated in the reciprocal space directly.24 G is the recip-
rocal lattice vector. On the other hand, the exchange-
correlation potential Vxc and the embedding potential �emb
are evaluated in the real space first, and are then transformed
to the reciprocal space by the FFTs. Once the Hamiltonian is
constructed, it is solved in the reciprocal space so that the
ground state KS orbitals, the KS eigenvalues, the electron
density and eventually the total energy can be determined
accordingly. Since �emb�r� depends on �I�r� and �II�r�, for a
given ionic configuration, �II�r� has to be constructed a pri-
ori and remains fixed during the minimization of Eq. �1�.

In the KS-DFT plane-wave calculation of the region I, we
introduce a box �B as shown in Fig. 1 over which the peri-
odic boundary conditions �PBC� are imposed. The PBC are
necessary for various FFTs which are crucial for efficient
numerical calculations. In the following, we justify the use of
the PBC with the realization that the real QM/MM system is
nonperiodic. The justification is analogous to the one em-
ployed in the periodic slab calculations of surfaces. In the
slab model, the wave functions and the electron density of
the surface are assumed to decay exponentially so that they
are vanishing at the end of the slab vacuum, introduced at
some distance away from the surface. Therefore, the PBC do
not lead to appreciable errors since there is no overlap of the
wave functions and the electronic density from the neighbor-
ing cells. In the QM/MM case, the basic ansatz is that �I is
confined within �I so that the wave functions and the charge

density of the region I decay to zero beyond �I. Thus as long
as the vacuum introduced between �I and �B is large
enough, it can effectively eliminate the fictitious interaction
between the periodic images.

C. Embedding potential

The embedding potential represents the physical effect
that the electrons in the region I feel due to the presence of
the region II. Without the embedding potential, �I will cor-
respond to the charge density of a bare cluster. The presence
of the embedding potential is thus to remove the fictitious
surface states and render a realistic description of �I.11

Here, we take Al as an example to examine the behavior
of the embedding potential. We choose a perfect lattice of Al
containing 14a0�14a0�a0 �a0=3.983 Å is the lattice con-
stant of Al� as the entire system with the innermost 4a0
�4a0�a0 as the region I. The distance that �I extends to the
region II is 2.61 Å, and the size of the periodic box is 8a0
�8a0�a0. Figure 2�a� presents the total local potential of
the system, the local potential of the region I and the embed-
ding potential. All these potentials are defined with respect to
�I. The total local potential consists of the local potential of
the region I and the embedding potential. In Figs. 2�b� and
2�c�, we show the charge density �I and �II, respectively.

First of all, all potentials vanish beyond �I due to the
constraint imposed on the total local potential. This constrain
has successfully enforced �I to be zero beyond �I as shown
in Fig. 2�b�. �I and �II only overlap over a distance �around
0.5a0� where the embedding potential is nonzero. The fact

FIG. 2. �Color online� �a� Total local potential, local potential in
the region I, and the embedding potential are plotted along a
straight line in �100� direction for a perfect Al lattice. The position
of the straight horizontal line is indicated in �b� and �c�. Charge
density �I and �II in x-y plane are plotted in �b� and �c�, respec-
tively. The blue �magenta� spheres represent the region I �II� ions,
and the contour scale �in Å−3� ranges from 0.0 �blue� to 0.225 �red�.
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that �I and �II overlap is of crucial importance and it is the
result of the self-consistent quantum mechanical coupling.
The sum of both densities should give the correct total den-
sity of the system.

From Fig. 2, it is observed that the embedding potential is
localized at the QM/MM interface and it decays to zero in
the interior of the region I. The behavior of the total local
potential at the interface is different from that at the interior
of the region I; this is because the total local potential is
defined with respect to �I which is equal to �tot only at the
interior of the region I but not at the interface. Once the total
local potential associated with �II is included, the total local
potential would be periodic throughout the entire space for
the perfect lattice.

III. APPLICATIONS

In this section, we apply the QM/MM method to study the
interactions between H and the extended defects in Al in-
cluding the edge dislocation and GB. For the kernel term in
OF-DFT, we use the Wang-Govind-Carter kinetic-energy
functional with the density-dependent kernel and parameters
�� ,� ,��= �5 /6+	5 /6,5 /6−	5 /6,2.7�.19 The Perdew-
Zunger local-density approximation25 is used to evaluate the
exchange-correlation functional for Al. The projected aug-
mentation wave method26,27 is employed for the pseudopo-
tential. The k points are sampled according to the
Monkhorst-Pack scheme.28 We use the so-called “force-
matching” EAM potential29,30 for the MM simulations. The
EAM potential has been scaled to yield precisely the same
lattice constant and bulk modulus as the corresponding KS-
DFT values.

A. H in grain boundary

In this section, we employ the QM/MM method to exam-
ine H-GB interaction focusing on H binding at various sites
and the H diffusion in the GB. In the 	5�210��001� symmet-
ric tilt GB model �Fig. 3�, the x, y, and z axis correspond to

�12̄0�, �210�, and �001�, respectively, and the periodic bound-
ary conditions are applied in the x and z directions. The
model measures 17.81 Å�185 Å�11.95 Å with 2388 at-
oms in total. The dimensions of the region I are 17.81 Å
�28.40 Å�11.95 Å with 180 DFT atoms. The GB plane is
located at the center of the region I. We use a force-based
conjugate gradient method to optimize the ionic structure of
the entire system with the total energy given by Eq. �1�. The
relaxation for all ions is performed until the maximum force
on any ion is less than 0.04 eV /Å. In the KS-DFT calcula-
tions, a plane-wave cutoff of 300 eV is used and the k points
are sampled with a 3�1�3 mesh. The NEB method has
been implemented in the QM/MM approach and is used to
determine the diffusion paths and the corresponding energy
barriers.

First we determine the site preference of an interstitial H
at the GB. We find that the energetically most favorable po-
sition for the H atom is not H1 on the GB plane �Fig. 3� but
rather at positions �referred as H1� in the following� slightly
off the GB plane �
0.8 Å� whose energy is 0.015 eV lower.

These preferred positions correspond to the tetrahedral sites
above and below the GB plane in the perfect lattice. In other
words, the GB does not perturb much the preferred H bulk
position. As shown in Fig. 4�b�, the H impurity attracts the
valence electrons from the neighboring Al atoms and be-
comes negatively charged; the ionic bonding between H and
the Al atoms has a directional character in accordance with
its local structure. To assess the energetic stability of H at the
GB, we calculate H-GB binding energy �EGB�H� defined as

�EGB�H� = Ec�GB + H� − Ec�GB� , �5�

where Ec�GB+H� and Ec�GB� are the cohesive energy of the
GB with and without the interstitial H atom, respectively. We
find that the binding energy �EGB�H� at three representative
sites H1�, H2, and H3 is −3.00 eV, −2.82 eV, and
−2.89 eV, respectively. As a comparison, we have also cal-

FIG. 3. �Color online� Atomic structure of 	5�210��001� sym-
metric tilt grain boundary. The smaller spheres represent the atoms
that are farther away from the page in �001� axis. The magenta and
green spheres represent the atoms in the region I and II �partially
shown�, respectively. The yellow spheres denote the interstitial H
atoms.

FIG. 4. �Color online� Interstitial H in �a� Bulk, �b� GB, �c� LP,
and �d� SF, respectively. The blue �red� isosurfaces illustrate the
bonding charge density �difference between the solid charge density
and the superposition of the atomic charge densities� distribution at
+�−� 0.06 Å−3. The positive �negative� bonding charge density rep-
resents electron accumulation �depletion� in forming the solid. The
yellow �magenta� spheres denote H �Al� atoms; the smaller spheres
represent that the atoms are farther away from the page.
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culated the H binding energy in bulk Al. To this end, we use
the stand-alone VASP calculation since the system is much
smaller than the GB. The dimensions of the supercell in the
VASP calculation are 14.08 Å�13.80 Å�14.63 Å along

�11̄0�, �111�, and �112̄� directions, respectively. Similar to
Eq. �5�, we define the H binding energy in bulk, �EBulk�H�
as

�EBulk�H� = Ec�Bulk + H� − Ec�Bulk� , �6�

where Ec�Bulk+H� and Ec�Bulk� are the cohesive energy of
the bulk with and without the interstitial H, respectively. We
have examined both tetrahedral and octahedral sites for the H
interstitial; we find that the tetrahedral site is energetically
more favorable than the octahedral site—the binding energy
differs by 0.07 eV. The H binding energy �EBulk�H� at the
tetrahedral site is −2.88 eV. Therefore the H atom prefers to
occupy the interstitial site at the grain boundary over the
tetrahedral site in the bulk. The H binding energy difference
between the bulk and the GB is 0.12 eV, agreeing very well
the experimental value of 0.15 eV.31 The tetrahedral site in
the bulk corresponds to H3 �or H3�� site where the H atom
forms four ionic bonds with the four-nearest-neighbor �NN�
Al atoms at the tetrahedral vertices as shown in Fig. 4�a�.
The fact that �EGB�H3� �−2.89 eV� matches very well
�EBulk�H� �−2.88 eV� demonstrates that the QM/MM

method can reproduce very accurately the stand-alone VASP

results.
Next we study the interstitial H diffusion in the GB by

considering two diffusion paths: �1� along the GB plane and
�2� across the GB plane. In the first case, the interstitial H
atom moves along �001�—the tilt axis of the GB. We find
that diffusion energy barrier is 0.26 eV as shown in Fig. 5�a�.
In this case, the H atom moves in the GB plane but slightly
deviates from the diffusion direction attracted by the neigh-
boring Al atoms. For comparison purpose, we have also cal-
culated the diffusion energy barriers of the interstitial H in
bulk Al and the results are listed in Table I. The lowest dif-
fusion energy path is from one tetrahedral site to the next

tetrahedral site in the �111� plane and along �11̄0� direction.
The calculated bulk diffusion energy barrier is 0.17 eV. On
the other hand, the corresponding energy barrier is 0.40 eV if
the H atom diffuses between the neighboring tetrahedral sites
along �001� direction. Therefore as far as the �001� diffusion
is concerned, the 	5�210��001� GB could provide a faster
diffusion channel or a pipe than the bulk with two orders of
magnitude increase in diffusivity at 300 K. For the H diffu-
sion across the GB plane from H3� to H3, we summarize the
results in Fig. 5�b�. We find that the interstitial H needs to
overcome an energy barrier of 0.17 eV to reach the GB while
it requires a much higher energy barrier of 0.29 eV to escape
from the GB. This asymmetry is due to the strong H-GB
binding which attracts the H impurities to the GB from the
bulk. Although there is an energy barrier for the H diffusion
from H3 �or H3�� to H2 �or H2��, the subsequent diffusion
into the GB region is spontaneous. We also find that there is
a narrow band of 4 Å in width where the interstitial H atoms
prefer to segregate �dashed box in Fig. 5�b��. This narrow
band could provide trapping sites for the H impurities once
they reach the GB region, consistent with experimental
observations.21

B. H in edge dislocation

Dislocations are of crucial importance to plastic deforma-
tion in materials. In fcc metals, dislocations can reduce its
elastic energy by dissociating into two Shockley partials con-
nected by a stacking fault �SF�.32 An accurate simulation of
dislocation core structure is challenging due to the following
reasons: �1� in order to capture the severe deformation and
possible bond breaking at the dislocation core, quantum me-
chanical calculations are often required; �2� standard ab ini-
tio quantum mechanical calculations employ either PBC or
open boundary conditions �OBC�. Neither is satisfactory for
many cases. The PBC lead to fictitious interaction among

FIG. 5. Top panel: the energy profile for the interstitial H atom
�H1 in Fig. 3� diffusing along �001� direction at the GB plane.
Bottom panel: the energy profile for the interstitial H atom diffusing
across the GB plane. The diffusion path is H3�→H1→H3. �d
denotes the atomic displacement with respect to H1.

TABLE I. H binding energy �E�H� �in eV�, diffusion direction, and diffusion energy barriers �Em �in eV�
of H in bulk, the grain boundary and the edge dislocation �LP and SF�, respectively.

Bulk GB LP SF

�E�H� −2.88 −3.00 −3.00 −2.78

Direction �11̄0� �112̄� �001� �001� �112̄� �112̄�
�Em 0.17 0.32 0.40 0.26 0.38 0.20
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dislocation images if the simulation cell is not large enough.
If the dislocation dissociates into partials, the problem could
be even worse. On the other hand, the OBC involve fictitious
interaction between the dislocation and surfaces. Recently, a
first-principles lattice Green’s-function boundary condition
method �FP-GFBC� has been proposed which appears effec-
tive to alleviate some of the problems mentioned above.33 In
this section, we first employ the QM/MM method to simulate
the core structure of the edge dislocation in Al with compari-
sons to other experimental and theoretical results. Then we
study the interaction between the H impurity and the dislo-
cation by examining the site preference and the H diffusion
along the dislocation line.

In the computational model shown schematically in Fig.

6�a�, the x, y, and z axis correspond to �11̄0�, �111�, and

�112̄�, respectively, and the PBC is applied in the z direction
�along the dislocation line�. The entire system consists of
169 Å�69 Å�14.634 Å with 10 710 atoms in total. The
dimensions of the region I are 14.42 Å�11.50 Å
�14.634 Å with 198 KS-DFT atoms and the rest of the
system belongs to the region II, including 10512 EAM at-
oms. The core of the a /2
110� edge dislocation is located at
the center of the region I. The repeating distance along the z
axis is three times of the minimal periodicity along the z
direction which is crucially important for describing H dif-
fusion. The H impurities are separated by �15 Å along the
dislocation line so that the fictitious interaction between the
periodic images of H is largely removed. The computational

parameters are similar to the grain boundary calculations but
with the k points sampled in a 1�1�3 mesh.

The dislocation core structure of pure Al is presented in
Fig. 6. Here we use the relative atomic displacement across
the dislocation slip plane along the x and z directions to
represent the edge and screw components of the strain field,
respectively. The derivative of the relative displacement with
respect to x gives the corresponding dislocation density. The
double peak in the dislocation density plot suggests that the
dislocation is dissociated into two Shockley partials whose
positions are represented by the peaks. Accordingly, we find
the partial separation distance as 7 Å. For comparisons, ex-
perimental measurement from the weak-beam transmission
electron microscopy reports a value of 8.0 Å for the separa-
tion distance in Al.34 The theoretical value determined by the
FP-GFBC method ranges from 7.0 to 9.5 Å.33 A multiscale
QCDFT method gives a value of 5.6 Å.35 A QM/MM me-
chanical coupling approach yields a value of 5.6 Å as well.36

The MM simulations based on empirical potentials have re-
ported a rather scattered results ranging from 5.4–6.2 Å,37

to 14.7 Å �Ref. 33� and 16.0 Å.38 Since the displacement
field is defined on a discrete lattice of atoms which are sepa-
rated by the NN distance of 1.4 Å in the x direction, there is
an intrinsic uncertainty in determining the dislocation posi-
tion. This uncertainty is in the same order ��1.4 Å� of the
NN distance. In light of this uncertainty, the present
QM/MM result compares very well with the experimental
value. Finally, because each theoretical method determines
the separation distance differently, the actual discrepancies
may not be as alarming as they appear to be.

Next, we determine the site preference of the interstitial H
at the dislocation core. Two sites are considered: one is at the
core of a partial dislocation, and the other is at the SF ribbon.
Since the two Shockley partials are equivalent, we focus on
the left partial �LP� only. As shown in Figs. 4�c� and 4�d�, the
interstitial H atom prefers to stay on the slip plane, and forms
ionic bonding with the neighboring Al atoms. Similar to Eq.
�5�, we can define the H binding energy with the dislocation,
�ELP�SF��H� as

�ELP�SF��H� = Ec�LP�SF� + H� − Ec�Disl� , �7�

where Ec�LP�SF�+H� is the cohesive energy of the disloca-
tion with an interstitial H atom in LP �SF�, and Ec�Disl� is
the cohesive energy of the dislocation. As shown in Table I,
we find that �ELP�H���EBulk�H���ESF�H�. Therefore the
H binds most strongly with the partial core and least strongly
with the stacking fault. On the other hand, the H binding
energy difference between the bulk and the LP is 0.12 eV,
which is the same with a previous theoretical result.39

Figure 7 summarizes the results of the interstitial H dif-
fusion along LP and SF. For H diffusion along LP, there is
only one energy barrier of 0.38 eV. In contrast, there are two
energy barriers for the H diffusion along SF with the largest
one of 0.20 eV. In other words, the H atom could be trapped
between the two barriers. Relative to the bulk diffusion bar-

rier of 0.32 eV along the �112̄� direction, the stacking fault
ribbon provides a faster pathway or a pipe for H diffusion
with two orders of magnitude increase in diffusivity at 300

FIG. 6. �Color online� �a� Atomic structure of the edge disloca-
tion. LP and RP represent the left and right Shockley partial, respec-
tively, and the stacking fault ribbon is denoted as SF. The magenta
and green spheres represent the atoms in the region I and II �par-
tially shown�, respectively. The yellow spheres denote the intersti-
tial H atoms at LP and SF. The edge and screw components of the
relative atomic displacement and the displacement density as a
function of x are shown in �b� and �c�, respectively, for pure Al. The
double peak in the density plot illustrates the distance between the
two partials as 7 Å.
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K. On the other hand, the partial dislocation core is not a
pipe. It is interesting to contrast the present results to that of
Si diffusion in the same dislocation.22 Because Si atom has a
much larger radius than H atom, it occupies the substitutional
site in Al. As a result, the bulk diffusion of a Si impurity
involves the formation of a vacancy, hence a much higher
energy barrier �1.26 eV�. On the other hand, the interstitial H
impurity can diffuse in the absence of vacancies. Therefore
although both SF and LP can act as pipes for Si, only SF can
accelerate the H diffusion. Moreover, Si moves by “pushing
its way through” with Al-Si covalent bonds being
compressed—the neighboring Al atoms are significantly dis-
torted during the diffusion. In contrast, H is attracted to the
nearest neighbor Al atoms and tightly bonded with them.
There is very little disturbance to the Al lattice during the H
diffusion and the ionic Al-H bonding remains intact. Finally,
it appears that SF provides a faster diffusion pipe for both Si
and H, regardless of their different atomic sizes, bonding
characters and occupation sites.

IV. CONCLUSION AND OUTLOOK

We have presented a self-consistent embedding QM/MM
method that is based on the plane-wave pseudopotential KS-
DFT formalism for treating the QM region. The implemen-
tation of the method, including the construction of the
Hamiltonian and the behavior of the embedding potential is
discussed. The QM/MM method is applied to study the in-
teraction of H impurities with the extend defects in Al. We
find that H binds strongly to both the GB and the dislocation.
It is energetically most favorable for H to be at either the GB
�close to the GB plane� or at the partial dislocation core; it is
less favorable for H at the bulk tetrahedral site and least
favorable at the stacking fault. Both the GB and the stacking
fault ribbon are found to provide a faster diffusion channel
along the relevant directions as compared to the bulk diffu-
sion. There exist trapping sites for the H atoms in the GB
region and along the stacking fault ribbon resulting from the
energy barriers bracketing these sites. Finally, the stacking
fault ribbon turns out to be a faster diffusion pipe than the
partial core for both the interstitial and substitution impuri-
ties in Al.

In terms of future development of the QM/MM method,
we expect a continued improvement of the kinetic-energy
functional40,41 which is used in the interaction energy calcu-
lation. Such an improvement is crucial for the method to
handle a broad class of materials. Another important devel-
opment has to do with magnetism which involves two com-
ponents of the spin density in MM region and the spin-
polarized DFT calculations in QM region. The
implementation and application of the QM/MM method for
molecular dynamics are underway. Finally, the same embed-
ding approach can be generalized to study molecular plas-
monics. In this case, a time-dependent DFT is coupled to
quantum hydrodynamic models, which can address elec-
tronic dynamics at a larger length scale.
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