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Strain-induced dimensional phase change of

graphene-like boron nitride monolayers

Qing Peng∗1,2,3

E-mail: qpeng.org@gmail.com

Abstract. We investigate the coupling between the electronic bandgap

and mechanical loading of graphene-like boron nitride (h-BN ) monolayers

up to failure strains and beyond by means of first-principles calculations.

We reveal that the kinks in the bandgap-strain curve are coincident

with the ultimate tensile strains, indicating a phase change. When the

armchair strain is beyond the ultimate tensile strain, h-BN fails with a phase

transformation from 2D honeycomb to 1D chain structure, characterized

by the “V”-shape bandgap-strain curve. Large biaxial strains can break

the 2D honeycomb structures into 0D individual atoms and the bandgap

closes.
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 2

1. INTRODUCTION

Materials are vulnerable to strain, which ubiquitously exist both locally and globally.

Strain could be introduced, both intentionally and unintentionally, by mechanical

loading, vibration, thermal fluctuations, and defects [1, 2, 3]. The strains could be

detrimental to the integrity of devices and degradation of material properties. It could

also be beneficial, for instance, in tailoring material properties. Nowadays strain-

engineering is a common approach to tune the electronic structure of nanomaterials

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. A direct-indirect band gap transition has been

induced by strain-engineering in two-dimensional phosphorene [15]. Strain-engineering

technique is important for advanced logic technologies [16, 17]. By straning silicon,

a leading-edge 90-nm technology had been reported [18, 19]. Strain engineering is a

routine technique to enhance the carrier mobility in nanoscale MOSFETs [20].

Engineered by Strain, a room temperature semiconductor-metal transition has been

achieved in MoTe2 thin films [21] and single-crystal vanadium dioxide beams [22].

Nano devices such as nano surface acoustic wave sensors and nano waveguides

could be synthesized by introducing local strain [23, 24]. Management of the electronic

performance under various large strains is vital and challenging in designing flexible

electronics [25], where a precondition is the knowledge of the coupling effect of the

mechanical and the electronic properties.

The graphene-like hexagonal boron nitride monolayer (h-BN ) is a 2D nanomaterial

analog of graphene having a honeycomb lattice structure [26]. h-BN is chemically

inert, with a high thermal conductivity and resistant to oxidation. Due to its

outstanding properties, h-BNhas found wide applications in micro and nano-devices

such as insulators with high thermal conductivity in electronic devices [26], ultraviolet-

light emitters in optoelectronics [27, 28, 29, 30], and as nano-fillers in high strength

and thermal conductive nanocomposites [31, 32]. It has been shown that a tunable

band gap nanosheet can be constructed by fabrication of hybrid nanostructures made of

graphene/h-BNdomains [33], which opens a new venue for research in the application

of h-BN for electronics [34].

Knowing the elastic properties, including elastic limits, is critical in design and

practical applications [3]. It has reported that the h-BNmonolayer has a bulk modulus

around 160 GPa and a bending modulus around 31.2 GPa [26, 35]. The linear and

non-linear (up to fifth order elastic constants) elastic properties of h-BNare reported

in our previous study [36], as well as the effects of mechanical strains on its radiation

hardness [37]. Due to the importance, the strain engineered bandgaps of h-BNhave

been extensively studied [38, 39, 40, 41, 42, 43]. The novelty of this study is the

coupling between bandgap and mechanical strain at large strains with the exploring

of subsequent phase changes, which manifests the upper limits of strain engineering of

h-BN . Using high fidelity ab initio Density Functional Theory (DFT) calculations, we

investigate the coupling between the mechanical and electronic properties at large tensile

strains. To include more phonon modes into the model in addition to reducing the self-
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 3

Figure 1. Geometry and DOS (a) The strain-free configuration of atomic super

cells of 112 lattice sites of h-BNmonolayer. The big balls denote B atoms and small

balls denote N atoms. The armchair and zigzag directions are orthogonal, pointing to

the nearest neighbor and the second nearest neighbor respectively. (b) The electronic

density of states of the 112-atom super cell at strain-free configuration.

image interaction, we use a relatively larger simulation box containing 112 atoms. The

details of the computational methods are in the Supplementary Information. We find a

positive correlation between the strain and the electronic bandgap. We observe the phase

transition from a 2D honeycomb to 1D chains and 0D atom dots. Our results provide

theoretical limits for the strain-engineering of electronic properties in h-BNbased van

der Waals electronics.

2. SIMULATION METHOD

2.1. Mechanical Loading

When a macroscopically homogeneous deformation (deformation gradient tensor [44] F)

is applied, the lattice vectors of the deformed h-BNare hi = FHi, i = 1, 2, 3, where Hi

are lattice vectors of undeformed (reference) configuration. The Lagrangian strain [45]

is defined as η=
1

2
(FTF−I), where I is the identity tensor. The strain energy density has

functional form of Φ = Φ(η). The elastic properties of a material are determined from

Φ, which is quadratic in strain for a linear elastic material. Nonlinear elastic constitutive

behavior is established by expanding Φ in a Taylor series in terms of powers of strain η

(e.g. [46]).

In this study, we modeled the monolayer h-BNas a two dimensional (2-D) structure

and assumed that the deformed state of the monolayer h-BN is such that the contribution

of bending to the strain energy density is considered negligible, compared to the in-plane

strain contribution. This assumption is reasonable since the radius of curvature of out-of-
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 4

plane deformation is Significantly larger than the in-plane inter-atomic distance. Then

the stress state of the monolayer h-BNunder those assumptions can be assumed to be

2-D and we only consider the in-plane stress and strain components for the structures

studied.

We used a super cell with periodic boundary condition for the study of h-

BNmonolayer. The super cell contains 112 lattice sites in one plane. It is carefully

selected to be nearly square, 17.601 × 17.421 Å, with x axis (direction 1) along zigzag

direction and y axis (direction 2) along armchair direction. With such configuration,

the deformation along two directions, 1 and 2, are similar.

Due to the periodic boundary condition, the defects in the self images may have

Significant interactions with each other. To ensure that the interactions between self

images are considered negligible, the distance between the nearest self images is set at

17.421 Å. The undeformed reference configurations of 112 lattice sites of h-BNare shown

in Figure 1 in the main text.

Due to the anisotropy of the atomic structure, h-BNmonolayers show different

properties along different directions, typically armchair and zigzag directions. For a

complete study, we applied strains to the h-BNmonolayers in three modes as uniaxial

strain along zigzag (z) and armchair (a) directions, and equal bi-axial strains along both

directions on the prismatic plane (b).

The deformations of the system are applied by a strain tensor, with a corresponding

deformation gradient on the supercell. Strain tensors in z, a, b are:

Sz =







1 + η 0 0

0 1 0

0 0 1






,Sa =







1 0 0

0 1 + η 0

0 0 1






,

Sb =







1 + η 0 0

0 1 + η 0

0 0 1






,

(1)

where η is Lagrangian elastic strain [47]. The corresponding deformation gradient

tensors [44] are :

Fz =







ε 0 0

0 1 0

0 0 1






,Fa =







1 0 0

0 ε 0

0 0 1






,Fb =







ε 0 0

0 ε 0

0 0 1






, (2)

where ε is the stretch ratio. Taking case z as an example, the length of supercell in

zigzag direction is εl0, where l0 is the length at strain free state. The length of supercell

in other two directions will not change. ε is determined by the Lagrangian elastic strain

[47] through equation ε =
√
1− 2η.

For h-BNmonolayer, the two-dimensional Young’s modulus is defined as :

Y2D =
1

A0

∂2Es

∂η2
|η=0, (3)
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 5

where Es is the total strain energy, which is the addition of the total energy

caused by strain, and A0 is the equilibrium surface area at strain free state. More

details of the mechanical loadings have been reported in our previous work [36],

which have been well used to explore the mechanical properties of 2D materials

[48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

2.2. Density Functional Theory Calculations

The stress-strain relationship of h-BNmonolayer under the desired deformation

configurations are characterized via ab initio calculations with the density-functional

theory (DFT). DFT calculations were carried out with the Vienna Ab-initio Simulation

Package (VASP) [60, 61, 62, 63] which is based on the Kohn-Sham Density

Functional Theory (KS-DFT) [64, 65] with the generalized gradient approximations

as parameterized by Perdew, Burke and Ernzerhof (PBE) for exchange-correlation

functions [66]. The electrons explicitly included in the calculations are the (2s22p1)

electrons of boron and (2s22p3) electrons of nitrogen. The core electrons (1s2) of boron

and nitrogen are replaced by the projector augmented wave (PAW) and pseudo-potential

approach [67, 68]. A plane-wave cutoff of 400 eV is used in all the calculations. The

calculations are performed at zero temperature.

The criterion to stop the relaxation of the electronic degrees of freedom is set by

the total energy change to be smaller than 0.00001 eV. The optimized atomic geometry

was achieved through minimizing Hellmann-Feynman forces acting on each atom until

the maximum forces on the ions were smaller than 0.01 eV/Å.

The atomic structures of all the deformed and undeformed configurations are

obtained by fully relaxing a 112-atom-unit cell where all atoms were placed in one plane.

The simulation invokes periodic boundary conditions for the two in-plane directions

while the displacement to out-of-plane direction is forbidden.

The irreducible Brillouin Zone was sampled with a Gamma-centered 5×5×1 k-mesh.

Such dense k-mesh was selected to ensure the energy convergence to 1 meV, reduce the

numerical errors caused by the strain of the systems. The initial charge densities were

taken as a superposition of atomic charge densities. There was a 15 Å thick vacuum

region to reduce the inter-layer interaction to model the single layer system. The results

of the calculations are independent of the precise value of the out-of-plane thickness, so

there is no physical interpretation attached to the quantity.

The VASP simulation calculates the true or Cauchy stress, Σ, which for monolayer

h-BNmust be expressed as a 2D force per length with units of N/m by taking the

product of the Cauchy stress (with units of N/m2) and the super-cell thickness of 15 Å.

The Cauchy stress is related to the second Piola-Kirchhoff (PK2) stress Σ as: [46]

Σ = JF−1σ(F−1)T (4)

where J is the determinant of the deformation gradient tensor F in Eqn. 2.
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 6

3. RESULTS AND ANALYSIS

The fully relaxed geometry of the whole 112-atom supercell is shown in Fig. 1 with the

simulation box and orientations. All atoms are coplanar. The lattice constant of the

h-BNmonolayer at strain free state is 2.512 Å, in good agreement with experiment

(2.51 Å) [69, 70] and DFT calculations [71, 40, 41]. The electronic properties are

extensively studied [72]. It is well known that h-BNmonolayers are insulators with a

wide indirect bandgap [73]. Interested readers could refer to the details of the electronic

band structures of the h-BNmonolayers, for example ref. [74] of our previous study. The

electronic density of states of the strain-free state of h-BNmonolayers represented in the

112-atom simulation box in this study are explicitly illustrated in Fig. 1(b), serving as a

reference to the strained states discussed later. The valence band maximum (VBM) is

set to be zero and marked as a dashed line. The bandgap is 4.6 eV, agreeing well with

previous DFT studies [40, 41].

It is worth noting that our result of the bandgap is about 25% lower than the

value of 6.17 eV reported by an experimental investigation [75]. The discrepancy

is attributed to the employed generalized gradient approximations of the exchange-

correlation functionals, which does not accurately capture the discontinuous energy

change associated with electron transfer. More accurate quasi-particle methods are

available [76] but it is impractical for large systems limited by computing power.

Although the predicted bandgap of an individual configuration is inaccurate, the trend

of the bandgap variation could be accurately captured [77]. Therefore, we only consider

the trends of band gaps under the mechanical strain loading, and do not make precise

bandgap predictions at any individual system.

When the strains are applied, all the atoms are fully relaxed. We studied the

behavior of the system under the strain that ranged from 0 to 0.4, with an increment

of 0.02 in each step for all three deformation modes. All strains are expressed in the

form of Lagrangian (true) strain. Such a wide range is carefully selected so that the

deformations beyond failure can also be theoretically investigated. It is worth noting

that although these large mechanical loading beyond failure are infeasible in any real

experiments, it is still valuable in providing insights and theoretical up-boundary.

The stress-strain relationship of three strain modes are shown in Fig. 2. For

the zigzag mode (z mode), the stress in the zigzag direction increases from 0 to the

maximum of 27.08 N/m, which is the ultimate tensile strain. The corresponding strain,

namely ultimate tensile strain, is 0.24. Beyond the ultimate tensile strain, the stress

monotonically decreases. The band gap decreases monotonically with respect to tensile

strain (Fig. 2b). There is a turn in the strain of 0.24, with a band gap of 3.8 eV.

When the tensile strain is less than 0.24, the band gap decrease nearly linearly with an

increasing strain, and the speed of the change of the band gap is much slower than that

beyond the ultimate tensile strain. The electronic band gap as a function of strain can be

expressed by the relationship of Eg = −3.3ηz +4.6 eV for strain in range 0 ≤ ηz ≤ 0.24,

where ηz is the Lagrangian strain in the zigzag direction. Beyond the ultimate tensile
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 7

Figure 2. Mechanic/electronic coupling The stress-strain curve of three tensile

strain modes along the (a) zigzag, (c) armchair, (e) biaxial directions in the plane.

The “2nd P-K stress” denotes the second Piola-Kirchhoff stress. The insets are the

geometry snapshots at the ultimate tensile strains and beyond. The electronic band

gap as a function of mechanical strains along (b) zigzag, (d) armchair, (f) biaxial

direction in the plane. The insets are the electronic density of states at the ultimate

tensile strains and beyond.
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 8

strain, the function becomes Eg = −11.25ηz + 6.5 eV. The decreasing speed is three

times faster than that before the ultimate tensile strain. Our results of the variation of

the bandgap agree well with the previous study [39].

The stress-strain response of the armchair mode (a mode) is very different to that

of z mode, as the following four aspects. First, the ultimate tensile stress 24.48 N/m

is smaller than that of zigzag mode (27.08 N/m). Second, the ultimate tensile strain

0.18 is much smaller than that of zigzag mode (0.24). Third, the tensile stress decreases

rapidly beyond the ultimate tensile stress. Fourth, the tensile stress turns from positive

to negative, indicating severe material failure, which is evident from the snapshots of

the geometries in the insets.

The corresponding electronic structures have also distinctive features in the

armchair deformation than that of zigzag. The most prominent feature is that the

“V”-shape of the bandgap-strain curve. At the strain of 0.28, there is a minimum

of 2.3 eV in the bandgap-strain curve, and we denote this strain as “valley” strain.

The bandgap linearly decreases with respect to strain before the ultimate tensile strain

0.18, with the relationship of Eg = −3.61ηa + 4.6 eV, where ηa is the Lagrangian

strain in the armchair direction. The slope in this regime is similar to that in the

zigzag mode. However, the decreasing speed is much faster beyond the ultimate tensile

strain. The variation of the bandgap follows the function of Eg = −16.5ηa + 6.9 eV

for 0.18 ≤ ηa ≤ 0.28. For the strains beyond the valley strain 0.28, the band gap

increases with an increasing tensile strain. This behavior is strikingly distinguishable

from previous investigations. This abnormal overturn of the trend of bandgap variation

at the valley strain implies significant structure change. It can be clearly seen that the

two-dimensional planar honeycomb structure now turns into parallelled one-dimensional

B-N chains, as illustrated in the insets in Fig. 2d. In other words, there is a structural

phase transition from a 2D honeycomb to 1D chains.

The 1D BN chains still interact with each other after the phase transition. Once

the strain increases beyond the valley strain of 0.28, the separation of these paralleled

1D BN chains increases and the coupling between these chains becomes weaker. When

the strain is 0.34 and above, there is a plateau of the bandgap, which indicates that the

1D BN chains are well separated from each other.

The shape of the stress-strain curve of biaxial mode (b mode) deformation is

alike to that of the z mode. The ultimate tensile strength is 28.64 N/m and the

corresponding ultimate tensile strain is 0.24. The stress decreases slowly with respect

to the biaxial strain. The snapshot of the geometry in the insets of Fig. 2e shows that

the h-BN structure is well kept for ηb < 0.24. However, the h-BNmonolayer fails for

strains larger than 0.24. The system eventually becomes individual atoms that are

well separated (inset in Fig. 2e). This structure phase change can be captured by the

change of the bandgaps. The bandgap decreases when the applied biaxial tensile strain

increases. The bandgap closes up at the strain of 0.4. The bandgap-strain curve shows

that there is a kink at the strain of 0.22, a small value (0.02) deviated from the ultimate

tensile strain of 0.24 due to numerical errors. It is worth noting that the ultimate
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 9

Table 1. Ultimate tensile strain ηu and the first kink strain ηk of h-BN in three

deformation modes. The first kink strain is the corresponding strain that the first kink

in a bandgap curves (electronic bandgap energy as a function of strain) occurs.

zigzag armchair biaxial

ηu 0.24 0.18 0.24

ηk 0.24 0.18 0.22

tensile strain extrapolated from nanoindentation experiment on a few layers (about two

layers) h-BN is 0.22 [69], agreeing well with our mechanical prediction of 0.24 from the

stress-strain curve and electronic prediction of 0.22 from the bandgap-strain curve.

The speed of the reduction of bandgap as a function of strain is slow when the

strain is smaller than ultimate tensile strain, and faster when the strain is more than

0.22. The first part of the bandgap curve obeys the equation Eg = −7.3ηb + 4.6 eV for

0 ≤ ηb ≤ 0.22, where ηb is the Lagrangian strain in the biaxial direction. The second

part of the bandgap curve can be described by the function Eg = −16.7ηb + 6.7 eV.

At the strain of 0.4, the 2D h-BN structure breaks up and forms individual atoms. We

can still consider this as a phase change, from two-dimensional to zero dimensional. It

is worth pointing out that this phase change 2D→0D is similar to the phase change of

2D→1D in uniaxial armchair deformation. It is interesting that the bandgap shapes are

similar in both phase change paths, since the slope of the bandgap-strain curve in biaxial

deformation is almost the same as that in the uniaxial deformation along armchair

direction. Our results of the bandgap changes with respect to the three deformation

modes agree well with the previous DFT study [39].

With an overview of all the three representative deformation modes, one could

conclude that the bandgaps decrease with respect to an increasing tensile strain. The

strain-engining bandgap is efficient because the significant amount of the bandgap

reduction could be achieved. The integrity of the h-BNmonolayers becomes vulnerable

when the mechanical strains are higher than the ultimate tensile strains. For the uniaxial

deformation along the armchair direction, there is a kink in the bandgap-strain curve,

which is coincident with the ultimate tensile strain. Beyond the ultimate tensile strain,

the system experiences a phase change from 2D to 1D for strains, clearly marked is the

“V”-shape of the bandgap-strain curve. For biaxial deformation, the system fails at

the ultimate tensile strain, starting with the phase transformation from 2D to 1D and

forming individual atoms. The clear mark is the bandgap closeup in the bandgap-strain

curve. When the strain is smaller than the ultimate strain, the speed of the reduction

of the bandgap as a function of strain is much smaller than that when the stain is larger

than the ultimate tensile strain.

Our striking result is the strain induced phase transitions could be marked in

the bandgap-strain curves of h-BNmonolayer. There is a positive correlation between

the stress-strain curves and bandgap-strain curves. For example, Table 1 illustrates

the strong correlation between the ultimate tensile strain and the first kink strain.
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Strain-induced dimensional phase change of graphene-like boron nitride monolayers 10

Such a strong and positive correlation manifests the strong coupling effect between the

mechanical properties and electronic properties. Our results of the coupling effect of

mechanical and electronic properties could provide a guide for the strain-engineering of

h-BNbased electronics. In addition, our results show that the 1D BN chains could be

fabricated by the micromechanical peeling of 2D honeycomb BN, similar to the peeling

of 3D hexagonal BN for 2D structures. Furthermore, 0D BN structures could also be

achieved by “mechanical” decomposition under large biaxial strains.

Our investigation extends the range of strain of previous studies [73, 74, 76, 39].

With the examination of large strains, our theoretical study explored the upper limits of

strain in strain engineering, which is unreachable by experimental approaches. For more

accurate modeling of the instablility at large strain, we used a large supercell to include

the phonons with short wavelength, which are missed in previous studies [73, 74, 76, 39].

It is worth noting that all the calculations are performed at zero temperature to suppress

the kinetics and thermodynamics effects which are inevitable in the real experiments

at finite temperature. Our theoretical investigation is valuable because it provides an

upper limit for the experiments and explored the strain domains that otherwise limited

by experiments. Since the method of first-principles calculations are well established and

robust, our results are reliable and could serve as a guidance for future experimental

investigations, manifesting the beauty and advantage of the theoretical investigation.

4. CONCLUSION

In summary, we studied the mechanical failure and the variation of the electronic

properties in response to the mechanical loading in monolayer hexagonal boron nitride

through first-principles calculations. Three typical strain fields were applied: uniaxial

along zigzag, armchair directions and equibiaxial in plane. Large mechanical strains

are applied way beyond the failure. Our results shows that mechanical strains, either

uniaxial or biaxial, can diminish the bandgap width efficiently. We observed the

correlation between the kink in the bandgap-strain curve and the ultimate tensile

strain. Beyond the failure strain, we observed phase transitions. Particularly, when

the armchair strain is beyond the ultimate tensile strain, h-BN fails with a phase

transformation from 2D honeycomb to 1D chain structure. This phase change is

characterized by the “V”-shape bandgap-strain curve. Furthermore, large biaxial strains

can cause the phase change from the honeycomb structures into individual atoms and

the bandgap closes. Our results of the electronic-mechanical coupling and phase changes

could serve as a roadmap for strain engineering the electronic properties for h-BNbased

flexible electronics.
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