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ABSTRACT: An algorithm is introduced for the molecular simulation of constant-pres-
sure plastic deformation in amorphous solids at zero temperature. This allows to
directly study the volume changes associated with plastic deformation (dilatancy) in
glassy solids. In particular, the dilatancy of polymer glasses is an important aspect of
their mechanical behavior. The new method is closely related to Berendsen’s barostat,
which is widely used for molecular dynamics simulations at constant pressure. The new
algorithm is applied to plane strain compression of a binary Lennard-Jones glass.
Conditions of constant volume lead to an increase of pressure with strain, and to a
concommitant increase in shear stress. At constant (zero) pressure, by contrast, the
shear stress remains constant up to the largest strains investigated (� � 1), while the
system density decreases linearly with strain. The linearity of this decrease suggests
that each elementary shear relaxation event brings about an increase in volume which
is proportional to the amount of shear. In contrast to the stress–strain behavior, the
strain-induced structural relaxation, as measured by the self-part of the intermediate
structure factor, was found to be the same in both cases. This suggests that the energy
barriers that must be overcome for their nucleation continually grow in the case of
constant-volume deformation, but remain the same if the deformation is carried out at
constant pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2057–
2065, 2004

INTRODUCTION

The glassy state of matter continues to present
many scientific challenges, despite a large
amount of research devoted to it over the past
century.1 In particular, the response of amor-
phous solids to large amounts of deformation is
not yet completely understood.2 It is meanwhile
widely accepted that plastic deformation of
glasses proceeds via the nucleation of stress-in-

duced relaxation events.2 This has been demon-
strated by computer simulations of the deforma-
tion process in a number of different systems.3–9

In addition, the stress–strain behavior of glassy
solids depends strongly on their thermal history,
suggesting an intimate coupling between the slow
relaxation processes that cause physical aging,
and the strain-induced relaxation during plastic
deformation.10 The precise nature of these relax-
ation processes seems to depend strongly on the
material. Although in atomic glasses, computer
simulations show a high degree of localization of
the relaxation events to about one nearest neigh-
bor shell, no such localization has to date been
observed in simulations of the deformation of
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glassy polymers. Indeed, there is experimental
evidence that the strain-induced relaxation in
polymers is much more diffuse, and that the rel-
evant size scale is set by the entanglement den-
sity of the polymer network.11,12

The nature of the discrete relaxation events
during plastic deformation of polymer glasses is
currently an unsolved problem of polymer phys-
ics. An aspect of particular importance concerns
the volume change associated with the plastic
relaxation events. Volume changes associated
with shear deformation are commonly referred to
as dilatancy. Experimental evidence suggests
that there is a link between the availability of free
volume in the amorphous polymer packing and
the resistance to plastic yielding.13 The shear ac-
tivation volume, a parameter that describes the
dependence of the yield stress on the applied
strain rate,2,14 is also known empirically to de-
pend weakly on the isotropic component of the
stress tensor in glassy polymers,15,16 in the sense
that hydrostatic pressure makes plastic deforma-
tion harder.

Apart from the fundamental interest in dila-
tancy as an aspect of the nature of plastic relax-
ation processes, volume changes that accompany
shear deformation directly influence material be-
havior. Examples include the formation of shear
bands in fiber composites, which has been shown
to depend on the dilatancy of the matrix,17 and
the initiation of microbuckling defects in fiber
composites under multiaxial loading.18

Direct volumetric observation of the density
changes associated with plastic deformation of
polymer glasses is difficult, due to the interfer-
ence of the elastic Poisson effect. Experimental
results on glassy polymers have mostly shown a
positive dilatancy (volume increase with shear
deformation),19 although the literature is not
unanimous on this point (ref. 20, and references
cited therein). Computer simulations could be
very helpful to clarify this situation.

However, most computer simulations of plastic
flow in glassy solids have been performed at con-
stant volume. In general, this leads to an increase
in system pressure with shear strain due to the
dilatancy:2 the strain-activated localized relax-
ation events not only bring about shear, but also
an increase in volume. If the total system volume
is constrained during the simulation, a concom-
mitant increase in system pressure results.7,21

Although a positive correlation between strain
and system pressure has been observed in most
simulations, this seems to depend strongly on the

material studied. Indeed, Hutnik et al. have ob-
served a negative dilatancy in the plastic defor-
mation of polycarbonate.6 In contrast to these
simulations, experimental studies of plasticity
are usually conducted not at constant volume, but
at constant pressure. Because in most amorphous
solids the elementary processes of plastic relax-
ation are known to be dilatant, it is possible a
priori that the kinematics of relaxation are af-
fected by the constraint of constant volume.

In the present contribution, we introduce an
algorithm that allows to perform athermal defor-
mation simulations under conserved pressure,
rather than at constant volume, and we apply it to
study the plane strain response of a binary Len-
nard-Jones glass. This allows to study the strain-
induced relaxation at P � 0, that is, under a
purely deviatoric stress state. As will be shown in
the following, constant-volume simulations lead
to a increase in shear stress at high strains due to
the pressure buildup. By contrast, at constant
pressure, no such increase is observed, while the
density of the system decreases linearly with
strain. In contrast to the stress–strain response,
the kinematics of the relaxation processes, as
measured by the decay of the intermediate struc-
ture factor, seem to be the same in both cases.

This new algorithm allows the direct simula-
tion of dilatant shear deformation in glassy ma-
terials, including the concomitant volume change.
The purpose of the present article is to introduce
the method, and to demonstrate its principle. In a
future contribution, we will report its application
to simulate the plastic response of polymer
glasses.

Recently, it has been realized from computer
simulations that the deformation-induced relax-
ation processes in atomic glasses lead to an expo-
nential decay of the self part of the intermediate
structure factor, similar to thermal relaxtion of
the liquid at temperatures sufficiently above the
glass transition. This has been verified both in
systems under continous simple shear flow21–25

and in transient deformation simulations.26

In a recent publication,27 we have investigated
the interplay between thermal and deformation-
induced relaxation in a binary Lennard-Jones
glass. It was found that thermal and deformation-
induced relaxation processes involve similar par-
ticle kinematics, and that they superimpose lin-
early when both occur at the same time. Such
simulations, even though they are carried out
using a model atomic glass, can give valuable
insight on the microscopic nature of phenomena
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that are observed in a much wider range of glassy
materials. For instance, simulations of Lennard-
Jones glass have shown that physical aging of the
glass leads to the development of a maximum in
the stress–strain curve at the yield point, and
that the effects of aging are erased by moderate
amounts of plastic deformation.21 This corre-
sponds to a well-known behavior of polymer
glasses,10 indicating that the phenomenon is gen-
eral, and can be seen in all glasses if the time
scales allow its observation.

Simulation Method

Plastic deformation can be simulated in the ab-
sence of thermal relaxation (i.e., at T � 0) in the
following way: in a first step, the extents of the
periodic simulation cell are changed by a small
amount corresponding to the desired strain incre-
ment. In a second step, the potential energy of the
system is minimized with respect to the fractional
coordinates of all particles using a conjugate-gra-
dient method. This procedure ensures that the
system is maintained at the bottom of a potential
energy well. If the strain increments are chosen
sufficiently small, the system’s trajectory will fol-
low the lowest potential energy path compatible
with the prescribed strain. This method has been
applied successfully to a variety of different sys-
tems in the past.3,6–8,21,28,29

Deformation at constant volume is easily im-
plemented in the above method by using a vol-
ume-conserving strain increment. In the present
contribution, we introduce an extension of this
method that allows for simulations to approxi-
mate conditions of conserved pressure instead.
The algorithm is closely related to the Berendsen
barostat,28,29 which is widely used to keep pres-
sure constant in molecular dynamics simula-
tions.30

After each deformation step, the stress tensor
T is calculated from the generalized internal
virial tensor

�nm � �
i�j

rij,n fij,m, where n, m � x, y, z, (1)

where rij,n and fij,n are the components of the
displacement and force vectors between particles
i and j, respectively. The components of the stress
tensor are given by

Tnm � �
�nm

V , (2)

where V is the system volume. Note that at finite
temperature, (2) would contain a kinetic energy
(ideal gas) term, also. The instantaneous system
pressure is then given by the trace of the stress
tensor

P � �
1
3 TrT. (3)

The constant pressure simulation method intro-
duced here aims at an evolution of the system
pressure P with deformation � that obeys the
differential equation

dP
d�

� �
P � P0

�P
, (4)

where P0 is a given target pressure, and �P is the
pressure relaxation strain, which is analogous to
the pressure relaxation time introduced by Be-
rendsen et al.28

In practice, the choice of �P is quite straight-
forward. On the one hand, a small value of �P is
desirable, to ensure an accurately isobaric simu-
lation. On the other hand, values of �P that are
small compared to the deformation step size ��
lead to numerical instabilities. Thus, reasonable
values of �P must lie in the neighborhood of 1. . .5
��.

The rate of change in the pressure can be con-
verted into a rate of change of the system volume
by using the isothermal bulk modulus K:

dP � �K
dV
V . (5)

We obtain

dV
V � �P � P0�

d�

K�P
. (6)

After each deformation/minimization step, the
volume of the system is therefore adjusted by a
factor e�, with

� � �P � P0���/�K�P�. (7)

Such an adjustment is easily achieved by altering
the extents of the simulation box. Even though
the bulk modulus K may not be precisely known
for a given system, an estimated value can be
used. Deviations from the true bulk modulus will
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not alter qualitatively the system’s trajectory;
only the effective pressure relaxation strain �P
will be slightly off the desired value.

For the present study, we have used a binary
Lennard-Jones fluid that closely resembles the
model introduced by Stillinger and Weber31 for
Ni80P20. The thermal dynamics of this sys-
tem32–35 as well as its behavior under
shear21,22,23,24,26 have been studied in great de-
tail. The model used here consisted of 3200 type A
and 800 type B atoms in an orthorhombic simu-
lation box subject to periodic continuation condi-
tions. The total potential energy was given by the
sum of the pair contributions

Eij � 4�ij���ij/rij�
12 � ��ij/rij�

6	 � cijrij
2 � dij (8)

for rij � rc, where rij is the distance between
atoms i and j, and �ij and �ij are the energy and
length parameters, respectively. The constants cij
and dij are introduced to render Eij continuously
differentiable at the cutoff radius rc. The values of
�AA � 1.0, �AB � 1.5 and �BB � 0.5, and �AA � 1.0,
�AB � 0.8 and �BB � 0.88 were used. The masses
of the particles of type A and type B were mA �
1.0 and mB � 0.53, respectively. The length of the
simulation box was 15. A cutoff radius rc � 2.5
was used in all the cases. All quantities in this
contribution are expressed in terms of reduced
units, i.e., length in units of �AA, energy in units
of �AA, and stress in units of �AA/�AA

3

Deformation simulations departed from a
glassy initial configuration, which had been ob-
tained by equilibrating a system of 4000 atoms by
molecular dynamics at a high temperature, and
subsequent energy minimization. A plane strain
deformation mode was used with a strain incre-
ment36

�� � � ��xx 0 0
0 0 0
0 0 ��zz

� , (9)

and a constant deformation step ��zz � �0.00125.
This corresponds to a plane strain compression.
Under conditions of conserved sample volume, or
for an ideally incompressible material, �xx � ��zz.
In general, the change in volume per deformation
step is given by

� � ln
V � �V

V � ��xx � ��zz. (10)

To ensure conditions of constant pressure, ��xx
was calculated prior to each deformation step ac-
cording to (7):

��xx � ��zz �P � P0

K�P
� 1� . (11)

RESULTS AND DISCUSSION

Pressure Conservation

To carry out constant pressure simulations, a rea-
sonably accurate estimate for the bulk modulus K
is needed. In the present case, this was obtained
from the elastic shear modulus observed in con-
stant volume simulations, assuming a Poisson’s
ratio of 0.3. This yields a value of K 
 49.8, in
units of �AA/�AA

3 . This is admittedly a crude way of
estimating K, and a dedicated simulation using
an isotropic deformation would almost certainly
have yielded a more reliable value. However, the
precise value of K is of little concern, because it is
the product K�P that actually enters the simula-
tion.

The system pressure and density as a function
of deformation are shown in Figures 1 and 2,
respectively, for values of �P � � (corresponding
to constant volume, dashed line), and �P � 0.0033
(approximating constant pressure conditions,
solid line). Each of the two data sets shown rep-
resents the average of 20 independent simulation
runs, departing from different starting configura-
tions.

Figure 1. System pressure P (in units of �AA/�AA
3 ) as

a function of deformation for �P � � (dashed line) and
�P � 0.0033 (solid line). The data shown represents the
average of 20 independent simulation runs.
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In both cases, the system starts out at a state of
slight isotropic tension, with a pressure of P
� �0.6. This is due to the chosen initial density,
which leads to zero pressure in molecular dynam-
ics simulations at T � 1.0. After energy minimi-
zation, in the absence of thermal motion, the ob-
served tension results.

It is clearly obvious from Figure 1 that at con-
stant volume (�P � �), the system pressure in-
creases systematically with deformation after a
brief stage of pressure reduction associated with
the elastic response. This initial response is due
to the fact that the Poisson ratio for the material
under study is close to � � 0.3, so that elastic
plane strain compression is accompanied by a
slight reduction in volume. Because the dashed
curve in Figure 1 has been obtained at constant
volume, a decrease in pressure results. After a
few precent of strain, the pressure increases mo-
notonously with the deformation. This effect has
been observed by several authors working on a
number of different systems.7,21 For a finite value
of �P, however, a different behavior results. The
initially negative pressure rapidly approaches the
target value of P0 � 0, which is reached at about
1% strain. Correspondingly, the structure densi-
fies (Fig. 2) from the initial 	 � 1.200 to 	 � 1.215.

After this initial phase, the system density con-
tinually falls with increasing deformation. After
the yield point, which occurs at about 8% defor-
mation in this system,21,26 there is a linear depen-
dence of the density on strain, with a slope of
�d��/�d�zz� � 0.0175 
 0.0005. The pressure re-
mains constant, with small fluctuations about the

target value of P0 � 0. These results demonstrate
that the method described above indeed does keep
the pressure constant, and they illustrate the di-
latant nature of the plastic deformation process.

Of course, the results are somewhat sensitive
to the selection of �P. We have found that similar
results can be obtained with a wide range of
choices for the relaxtion strain �P. Figure 3 shows
the system pressures for a range of different val-
ues of �P. For �P 
 1, the barostat is not suffi-
ciently effective to compensate for the dilatancy,
and a systematic drift in the system pressure
results (first column in Fig. 3). On the other hand,
�P � 0.002 results in increasing magnitude of the
density fluctuations with strain, and at �P �
0.00125, the computation becomes numerically
unstable at deformations greater than about 0.6.
This leaves a window for �P of 0.002 � �P � 0.05
that offers good pressure conservation without
excessive fluctuations. We have chosen a value of
�P � 0.0033 as a working compromise for the
purposes of the present study.

Stress–Strain Behavior

Running the deformation under conditions of con-
served system pressure was found to have a pro-
found effect to the evolution of the shear stress
with deformation, in particular, at large deforma-
tions. Figure 4 shows the von Mises equivalent
shear stress as a function of �zz for both constant
volume (�P � �) and constant pressure (�P �
0.0033). The von Mises equivalent stress, essen-
tially the second invariant of the stress tensor, is
a positive measure of the amount of shear stress
present, and is defined as

�eq � �3
2 tr�td � td�, (12)

where td is the deviatoric part of the stress tensor

td � t � PI, (13)

with the identity tensor I.
At small strains, the von Mises stress behaves

similar for both constant volume and constant
pressure: an elastic linear increase is followed by
a plastic regime, where �eq is more or less inde-
pendent of strain. The yield stress, as measured
by the plateau value in �eq seems to be slightly
lower in the case of constant volume. Marked
differences between the two cases become appar-

Figure 2. Number density of particles 	 (in units of
1/�AA

2 ) as a function of deformation for �P � � (dashed
line) and �P � 0.05 (solid line). The data shown repre-
sents the average of 20 independent simulation runs.
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ent at high deformations, above about ��zz� � 0.3.
Whereas at constant pressure, the von Mises
stress continues to fluctuate slightly around the

same plateau value, it raises increasingly rapidly
in the case of constant volume.

This increase can easily be understood by the
buildup of system pressure, which progressively
hinders dilatant shear relaxation events. As a
result, only shear relaxation events with a small
amount of local increase in volume are nucleated.
This leads to the observed increase in resistance
to shear.

Under constant pressure conditions, no such
effect is observed. The von Mises equivalent
stress remains at the same value up to the max-
imum deformation probed in the present simula-
tions. Figure 4 shows a small increase in the
magnitude of the stress fluctuations at high
strains. The fluctuations are due to the finite size
of the simulation cell. Because the cell goes from
a cubic shape at �zz � 0 to an elongated shape at
�zz � �1, its thickness in the z direction continu-
ally decreases during the course of the simula-
tion. This leads to less efficient averaging of the
normal stress component tzz in the later stages of
the deformation. Because tzz provides a dominant

Figure 3. Effect of different choices of the relaxation strain �P on the evolution of
pressure (top row) and density (bottom row) over the course of a plane–strain defor-
mation simulation from �zz � 0 to �zz � 1. For each value of �P, results from a single
simulation run are shown.

Figure 4. Von Mises equivalent shear stress � as a
function of strain �zz for relaxation strain �P � �
(dashed line) and �P � 0.0033 (solid line). Each data set
shown is the average of 20 independent simulation
runs.
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contribution to both P and �eq, the fluctuations in
these values increase over the course of the sim-
ulation.

Strain-Induced Structural Relaxation

The structural relaxation of amorphous solids can
be monitored conveniently by the decay of the self
part of the intermediate structure factor,

�s�k, t� � � Gs�r, t�e�ik�rdr, (14)

where the van Hove correlation function Gs(r,t)dr
is proportional to the probability of observing a
particle within dr of r at time t, given that it was
located at the origin at time 0,37 �s(k, t) is nor-
malized such that �s(k, 0) � 1.

In the present case, where plastic deformation
is simulated under exclusion of thermal relax-
ation, time has no meaning, and must be replaced
by the strain that continually increases during
the simulated trajectory. Therefore, in the
present context the relevant correlation functions
are G(r, �zz) and �s(k, �zz).

26

The isotropically averaged relaxation functions
�s(k, �zz) are shown in Figure 5 for k � 	k	 � 7.251
(this value corresponds to the position of the max-
imum of the static structure factor). In both cases,
the contribution of the affine deformation to the

decay of �s, which is purely caused by the shape
change of the simulation box and not the rear-
rangement of the atoms inside it, has been re-
moved according to a procedure described in de-
tail in ref. 26.

The curves for constant pressure and constant
volume are indistinguishable; they had to be dis-
placed from one another in Figure 5 to avoid
coincidence. This result contrasts sharply with
the pronounced difference in the stress–strain be-
havior of the two cases. It suggests that the kine-
matics of the relaxation events nucleated by plas-
tic deformation in the present binary Lennard-
Jones system are the same under conditions of
constant pressure and constant volume.

This seems surprising, given the marked dif-
ferences in the von Mises equivalent stress be-
tween the two cases. A priori, it seems quite pos-
sible that the intermediate structure factor is not
a sensitive measure of the change in kinematics.
To rule out this possibility, the structure of the
simulation systems were carefully investigated at
different levels of deformation. No differences
apart from the change in density in the case of
conserved pressure could be identified. In partic-
ular, the pair-correlation functions gAA(r), gBB(r),
and gAB(r), measuring the distribution of A � A, B
� B, and A � B particle pairs, respectively, have
been investigated as a function of deformation.
The pair correlation functions were not affected
by the deformation, and no differences between
the cases of constant volume and constant pres-
sure could be identified. As an example, gBB(r) is
shown in Figure 6 for both constant pressure
(solid lines) and constant volume (dashed lines),
at ��zz � 0, 0.2, 0.5, and 0.9, respectively. gBB
has been shown to provide a sensitive measure of
the state of the system, because contacts between
B particles are energetically disfavored by the
force field.21 The fact that gBB(r) does not differ
between systems deformed at constant pressure
and constant volume therefore suggests that they
are indeed structurally identical, up to a small
difference in density.

The evolution of the potential energy landscape
of atomic glasses upon changes in density has
been investigated in detail by Malandro and
Lacks.38 They found that reducing the density
leads first to a lowering in the energy barrier
between adjacent minima (“inherent struc-
tures”39,40) and then to their complete disappear-
ance. Malandro and Lacks reported that a 3%
decrease in volume leads to the loss of about one
quarter of the possible inherent structures.38

Figure 5. Self part of the isotropically averaged in-
termediate structure factor �s(k, �zz) as a function of
strain �zz for constant volume (�P � �, dashed line), and
constant pressure (�P � 0.0033, solid line). The dashed
curve has been displaced vertically by 0.1; otherwise,
the two curves would coincide to within the line width.
k � 7.251 in both cases; corresponding to the location of
the maximum in the static structure factor.
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Their study used a single-component atomic
glass; however, a similar behavior of the binary
Lennard-Jones fluid studied here must be ex-
pected. In the present case, shear deformation at
constant volume seems to lead to an increase of
the height of energy barriers between adjacent
minima, as manifested by the increase in the von
Mises equivalent stress. Under conditions of con-
stant pressure, this increase is apparently per-
fectly compensated by the decrease in density,
leading to a constant von Mises stress.

CONCLUSIONS

In summary, an algorithm similar to Berendsen’s
barostat has been introduced for the simulation of
plastic deformation of glassy solids at constant
pressure, and it has been successfully applied to
the plane strain compression of a binary Lennard-
Jones fluid. The dilatant nature of the elementary
plastic relaxation processes was clearly demon-
strated by a linear decrease of density with strain
with a slope of �dP�/�d�zz� � 0.0175 
 0.0005.

Although no difference in the strain-induced
structural relaxation of the system could be iden-
tified between the cases of constant pressure and
constant volume, the response of the von Mises
equivalent shear stress to deformation is strongly
affected. Conditions of constant volume lead to a
build-up of system pressure with deformation,
which, in turn, leads to an increase of resistance
to further deformation, that is, an increase in the

von Mises equivalent stress. In the case of con-
stant pressure, no such effect is observed, and the
von Mises equivalent stress remains at the level
of the yield point over the entire range of defor-
mation.

The results presented in this contribution give
rise to a number of questions. On the one hand, it
is entirely unclear what determines the specific
value of the observed dilatancy. Simulations on
different molecular and atomic glasses are cur-
rently underway in our laboratory, to obtain in-
formation on the variability of the dilatancy in
different systems. On the other hand, the fact
that no change in the pair correlation functions
was found as a function of deformation in the case
of constant volume is intriguing. This means that
glasses with the same pair correlation functions
can exhibit widely different pressures. However,
at zero temperature, the arrangement of the at-
oms is the only factor that influences the system
pressure. The systems therefore must be struc-
turally different before and after shear deforma-
tion at constant volume. We are currently explor-
ing higher order correlation functions as a means
to quantify these subtle differences.

We are indebted to Greg McKenna for helpful discus-
sions. This work was supported by the National Science
Foundation by an Early Career Development Award to
M.U. (DMR-0094290), and by a Junior Faculty Award
to M.U. from Petroleum Research Fund, administered
by the American Chemical Society (PRF-36246-G7).
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